Bentukumum fungsi kuadrat adalah f(x) = ax 2 + bx + c = 0 dimana a, b, dan c adalah bilangan real dan a β‰  0. Grafik fungsi kuadat ini gambarnya berbentuk parabola. Untuk menggambarnya diperlukan langkah-langkah sebagai berikut : (1) Menentukan titik potong dengan sumbu x , syaratnya y = 0 sehingga ax 2 + bx + c = 0 (x - x 1)( x - x 2) = 0 Y= f(x) = ax2 + bx + c. Sumbu simetri merupakan garis yang membagi dua parabola menjadi sama besar. Ini adalah rumus mencari fungsi kuadrat jika diketahui titik potong pada sumbu x. Grafik tidak memotong sumbu x (memiliki akar yang imaginer/akar negatif ). Karakteristikgrafik fungsi kuadrat y = f (x) diberikan grafik fungsi kuadrat f (x) = ax2 +bx+c f ( x) = a x 2 + b x + c. X 2 4x 21 0. Syaratnya nilai d=0) diketahui fungsi kuadrat f (x)=ax2+bx+c. Persamaan grafik fungsi kuadrat yang memotong sumbu x di titik (2,0) dan (3,0) serta melalui titik (0,6) adalah. 3 tidak memotong atau menyinggung Jikagrafik fungsi kuadrat fx=ax2+bx+c mempunyai titik puncak (8,4) dan memotong sumbu-X negatif, maka SD Matematika Bahasa Indonesia IPA Terpadu Penjaskes PPKN IPS Terpadu Seni Agama Bahasa Daerah Salahsatu sifat fungsi kuadrat adalah c > 0 maka grafik parabola memotong sumbu Y positif. Foto: Sementara itu, ada tiga jenis grafik pada fungsi kuadrat, yakni y = ax2, y = ax2 + c, dan y = a(x - h)2 + k. dengan mengetahui tiga titik koordinat yang persamaannya adalah y = ax2 + bx + c. Grafikfungsi y=ax2+bxβˆ’1 memotong sumbu X di titik (21 , 0) dan (1, 0). Fungsi ini mempunyai nilai ekstrim Pertanyaan. Grafik fungsi memotong sumbu X di titik dan . Fungsi ini mempunyai nilai ekstrim Mau dijawab kurang dari 3 menit? Coba roboguru plus! NP. N. Puspita. 2 Jika pada y = ax2 + bx + c nilai b bernilai 0, maka fungsi kuadrat akan berbentuk: y = ax2 + c. yang membuat grafik pada fungsi ini simetris pada x = 0 dan memiliki titik puncak di (0,c) 3. Jika titik puncak ada di titik (h,k), maka fungsi kuadrat menjadi: y = a (x - h)2 + k. dengan hubungan a, b, dan c dengan h, k adalah sebagai berikut : Teksvideo. diberikan grafik fungsi kuadrat FX = AX kuadrat + BX + C diketahui bahwa dia mempunyai titik puncak di 8,4 kita kan Gambarkan kira-kira ini adalah sumbu x ini adalah sumbu y selalu di 8,4 baris 12345678 1234 mati Disini Kalau dia memotong sumbu x negatif sumbu x negatif itu di daerah sini berarti gambarnya itu akan melengkung karena dia titik puncak itu berarti dia sudah yang kalau Teksvideo. Halo cover untuk mengerjakan soal ini kita harus ingat jika kita memiliki fungsi parabola dengan bentuk AX kuadrat + BX + C maka parabola ini akan memiliki titik puncak dengan koordinat x p koma y p x puncak puncak puncak ini disebut juga sumbu simetri dan Y Puncak disebut juga nilai ekstrem lalu kita harus ingat sifat-sifat parabola berdasarkan nilai a b dan c nya berdasarkan nilai a. 44zrF. Kelas 9 SMPFUNGSI KUADRATFungsi kuadrat dengan tabel, grafik, dan persamaanGrafik fungsi kuadrat y = ax^2 + bx + c menyinggung sumbu X di titik -4, 0 dan memotong sumbu Y di titik 0, -8. Tentukan nilai a dan kuadrat dengan tabel, grafik, dan persamaanFUNGSI KUADRATALJABARMatematikaRekomendasi video solusi lainnya0353Diketahui garis dengan persamaan x + 4y + 3 = 0 dan 2x - ...0247Grafik dari y = 4x - x^2 paling tepat digambar sebagai...0404Jika f adalah fungsi kuadrat yang grafiknya melalui titik...0349Grafik fungsi kuadrat yang memotong sumbu X di titik -4,...Teks videoBaiklah kali ini kita akan bahas soal tentang fungsi kuadrat grafik fungsi kuadrat y = AX kuadrat + BX + C menyinggung sumbu x di titik Min 4,0 dan memotong sumbu y di titik 8 tentukan nilai a dan b nya ini sekarang saya menggunakan dulu titik ini 0,8 dan saya masukkan ke dalam persamaannya jadinya y = AX kuadrat + BX + c atau masukan Bakti minus 8 = a * 0 + 0, + c artinya 8 kali kita masukkan titik yang kedua dalam persamaan jadinya jadinya 0 X4 Batik A * 4 ^ 2 + b * 4 + 8 / 0 = ini di pangkat 2 16 a tambah minus Pakde kurang 88 AC pendingin mati 8 = 12 A kurang 4 b saya Sederhanakan semuanya saya bagi 14 jadinya 2 = w a kurang b. Saya pindah B dan 2 nya 1 akar terjadinya b = 4 A kurang 2 Oke sekarang kita beralih ke pernyataan berikutnya persamaan ini menyinggung sumbu x di titik 4,0 menyinggung itu berarti dedeknya = 0 rumus d adalah b. Kuadrat minus 4 aja sekarang kita masukkan baiknya ini masukan berarti 4 A minus 2 pangkat 2 kurang 4 x a c nya minus 8 Ah kurang 24 kurang 2 kurang minus 4 dikali minus 8 berapa jadinya + 32 a sekali 16 a kuadrat kurang 8 a dikurang 8 A + 4 A + 32 a 16 a kuadrat ini jadi minus 16 + 32 jadinya + 16 a + 40 saya Sederhanakan lagi semuanya Saya beli 4 4 a kuadrat + 4 A + 1 B sekarang kita tinggal faktorkan sama dengan luas 154 a Sini saya tulis ar4 di ini 4 dari mana kan di sini 4 dan 33 disisipkan 3 polisi 10-10-10 Oke sekarang kita tinggal Tentukan berapa Kalau dikali hasilnya AC ditambah hasilnya di sini ac-nya adalah apa engkau tambah salah Bi juga 4 berapa kode-kodenya Sin 4 x + Sin 4 saya menemukan 2222 bakti di sini kita tulis + 2 + 2 karena tidak ada yang kita bisa bagi 44 yang di sini kita bisa pecah menjadi dua dan dua Oke Mbak keduanya kita coret ke sini dan 2 nya juga kita coba ke sini jadinya 2 A + 1 dan 2 A + 1 berarti anaknya adalah 2 A + 1 = 0 ah = min 1 dibedakan dan dibagi 2 per 2 Oke sekarang kita sudah menemukan nilai a nya sekarang kita tinggal masukkan nanya ke dalam persamaan ini untuk mencari lebihnya arti d = 4 x lidah Tengah kurang 2 B = 4 dikali minus setengah itu minus 2 dikurang 2 hasilnya adalah minus 4 tentukan nilai a nya adalah setengah dan b nya 4 skema bahasan soal kali ini dan sampai jumpa dalam pembahasan berikutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul BerandaGrafik fungsi y = x 2 + bx + 4 menyinggung garis y...PertanyaanGrafik fungsi y = x 2 + bx + 4 menyinggung garis y = 3 x + 4 . Maka nilai b yang memenuhi adalah…Grafik fungsi menyinggung garis . Maka nilai b yang memenuhi adalah…- 4- 334NIMahasiswa/Alumni Universitas DiponegoroPembahasanGrafik fungsi menyinggung garis, maka Syarat menyinggung adalah D = 0Grafik fungsi menyinggung garis, maka Syarat menyinggung adalah D = 0 Perdalam pemahamanmu bersama Master Teacher di sesi Live Teaching, GRATIS!3rb+Yuk, beri rating untuk berterima kasih pada penjawab soal!Β©2023 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia Fungsi kuadrat atau yang dikenal juga sebagai fungsi polinom adalah fungsi dengan pangkat peubah tertingginya adalah umumnya, bentuk umum dari fungsi kuadrat adalah fx=ax2+bx+c atau y=ax2+bx+ fungsi selalu berkaitan dengan grafik fungsi. Begitu juga dengan yang ada pada fungsi fungsi kuadrat memiliki bentuk seperti parabola. Untuk menggambar grafik fungsi kuadrat harus ditentukan titik potong dengan sumbu koordinat dan juga titik sebutan lain untuk titik ekstrim yaitu titik puncak atau titik maksimum atau minimum. Dan sekarang kita membasa masing-masing dari titik tersebut. Simak pembahasannya berikut Potong dengan Sumbu KoordinatTitik EkstrimSifat Kurva ParabolaMenyusun Fungsi kuadratHubungan Garis Dengan ParabolaContoh Soal dan PembahasanTitik Potong dengan Sumbu KoordinatTitik potong dengan sumbu X didapatkan dengan cara menentukan nilai peubah x pada fungsi kuadrat. Apabila nilai peubah y sama dengan nol, sehingga akan didapatkan titik potong x1,0 dan x2,0.Yang mana x1 dan x2 adalah akar-akar persamaan perlu kalian ingat bahwasannya berbagai akar persamaan kuadrat tergantung dari diskriminannya sama dengan nol maka akan didapatkan hanya satu akar dan ini berarti hanya ada satu titik potong dengan sumbu nilai diskriminannya kurang dari nol persamaan kuadrat tersebut tidak mempunyai akar real yang berarti tidak mempunyai titik potong dengan sumbu potong dengan sumbu Y didapatkan dengan cara mencari nilai y pada fungsi kuadrat apabila nilai peubah x sama dengan nol, sehingga akan didapatkan titik 0,y1.Titik EkstrimTitik ekstrim pada fungsi kuadrat adalah sebuah koordinat dengan absisnya merupakan nilai sumbu simetri serta ordinatnya adalah nilai koordinat titik ekstrim pada fungsi kuadrat y=ax2+bx+c yaitu seperti berikut merupakan diskriminanD=b2-4acSeperti yang telah kita sebutkan di atas, merupakan sumbu simetri dan adalah nilai ekstrim dari fungsi Rumus Titik Ekstrim Fungsi KuadratTitik ekstrim dapat kita peroleh dari konsep turunan ekstrim fungsi kuadrat y=ax2 + bx + c didapatkan dengan cara menurunkannya terlebih dahulu, lalu hasil turunannya sama dengan nol, y’ = 0, sehingga akan didapatkan bentuk seperti di bawah iniBerikut adalah tahapan untuk menggambar grafik fungsi kuadrat y=ax2+bx+cMenentukan titik potong dengan sumbu potong dengan sumbu X apabila y=0. tidak ada untuk fungsi kuadrat yang mempunyai D 0, parabola terbuka ke atas sementara titik baliknya minimum sehingga memiliki nilai a 0, b > 0 atau a 0 atau a > 0, b 0, grafik parabola memotong di sumbu y c 0 persamaan kuadrat memiliki dua akar real yang berlainan. Parabola akan memotong sumbu x di dua titik. Untuk D kuadrat sempurna maka kedua akarnya rasional, sementara D tidak berbentuk kuadrat sempurna maka kedua akarnya berupa akar D = 0 persamaan kuadrat memiliki dua akar yang sama akar kembar, real, dan juga rasional. Parabola akan menyinggung pada sumbu D 0 parabola akan selalu berada di atas sumbu x atau biasa disebut sebagai definit D 0 berarti garis akan memotong parabola ada di dua = 0 berarti garis memotong parabola di satu titik menyinggungD 0, b > 0 dan c > 0a 0a 0 dan c 0, b > 0 dan c 0 dan c > 0JawabDiketahui titik puncaknya adalah 8,4, sehingga grafik terbuka ke bawah, makaa 0 D = b2 – 4ac, syarat memotong sumbu x negatif D > 0 sebab b > 0 dan a 0 + – 4-c > 0 c > 0Jadi jawabannya yaitu ESoal 3. Matematika IPA SBMPTN 2014Diketahui suatu parabola simetris terhadap garis x = -2 dan garis singgung parabola tersebut dititik 0,1 sejajar dengan garis 4x + y = 4 . Titik puncak parabola tersebut adalah …-2,-3-2,-2-2,0-2,1-2,5Jawab Misalkan persamaan parabolanya adalah y = ax2 + bx + c parabola simetris kepada garis xp = -2 maka tentukan xp = -b/2a =-2 β†’ b = 4garis ≑ 4x+y = 4 β†’ mg = -4 Sebab sejajar maka mparabola = mgaris = -4 mparabola = y 2ax + b = -4 lewat titik 0,1 2a0 + b = -4 b = -4Untuk menentukan xp dan yp b = 4a -4 = 4a a = -1Persamaan parabola y = ax2 + bx + c adalah sebagai berikut y = -x2 – 4x + c melalui titik 0,1 1 = -02 – 40 + c c = 1Maka bisa dihitung y = -x2 – 4x + 1 xp = -b/2a = -4/2-1 = -2 dan yp = -22 – 4-2 +1= 5Sehingga titik puncak parabolanya yaitu -2,5Jadi jawabannya yaitu ESoal 4. UN 2008Persamaan grafik fungsi kuadrat yang melalui titik A1,0, B3,0, dan C0,-6 adalah …y = 2x2 + 8x – 6y = -2x2 + 8x – 6y = 2x2 – 8x + 6y = -2x2 – 8x – 6y = -x2 + 4x – 6JawabUntuk titik C 0,-6 β†’ x = 0, y = – 6Untuk titik A 1,0 dan B 3,0 β†’ x1 = 1, x2 = 3Maka rumus yang berlaku adalah y = ax – x1x – x2y = ax – 1x – 3 – 6 = 0 – 10 – 3 – 6 = 3a a = – 2Menentukan fungsi kuadrat caranyay = ax – x1x – x2 y = – 2x – 1x – 3 y = – 2x2 – 4x + 3 y = – 2x2 + 8x – 6Jadi jawabannya yaitu BSoal 5. UN 2007Perhatikan gambar!Persamaan grafik fungsi kuadrat pada gambar adalah …y = -2x2 + 4x + 3y = -2x2 + 4x + 2y = -x2 + 2x + 3y = -2x2 + 4x – 6y = -x2 + 2x – 5JawabDiketahui xp , yp = 1,4 x , y = 0,3Ditanyakan fungsi kuadrat yang akan terbentuk?Untuk parabola yang mempunyai titik puncak rumus yang berlaku seperti di bawah ini y = ax – xp2 + yp y = a x – 12 + 4 3 = a0 -12 + 4 3 = a + 4 a = -1Fungsi kuadrat yang terbentuk yaitu y = ax – xp2 + yp y = -1x -12 + 4 y = -x2 + 2x + 3Jadi jawabannya yaitu CDemikianlah ulasan singkat terkait Fungsi Kuadrat yang dapat kami sampaikan. Semoga ulasan di atas mengenai fungsi kuadrat dapat kalian jadikan sebagai bahan belajar kalian.